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Abstract We prove the exact relations between the critical exponents and the susceptibility,
implied by the Haldane Luttinger liquid conjecture, for a generic lattice fermionic model or
a quantum spin chain with short range weak interaction. The validity of such relations was
only checked in some special solvable models, but there was up to now no proof of their
validity in non-solvable models.
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1 Introduction and Main Results

One dimensional (1D) electron systems can be experimentally realized [1, 2] and their
properties can be measured with increasing precision. Realistic models are very difficult
to study and most of the theoretical predictions for such systems (for some recent exper-
iments see [3]) are based on a number of conjectures, whose mathematical proof is quite
hard.

Kadanoff [4] and Luther and Peschel [5, 6] proposed that a large class of interacting 1D
fermionic systems, quantum spin chains or 2D spin systems belongs to the same universality
class. The critical indices appearing in the correlations are not the same (on the contrary, the
indices depend on all details of the Hamiltonian), but they verify universal extended scaling
relations between them, with the effect that all indices can be expressed in terms of any one
of them. Usually, such hypothesis is formulated by saying that there exists a quantity K ,
whose value depends on the model, such that the critical indices can be expressed by sim-
ple universal relations in terms of K . The validity of such relations can be verified in the
Luttinger model, which was solved by Mattis and Lieb [7].

Haldane [8, 9] observed that in general even the knowledge of a single exponent is lack-
ing, while the thermodynamic quantities are usually much more accessible, both experi-
mentally and theoretically. He conjectured that certain relations between the parameter K
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and thermodynamical quantities, like the compressibility, are universal properties in a large
class of models which he named Luttinger liquids. In the case of models which can be ana-
lyzed by Bethe ansatz and belonging to such class, the Haldane conjecture allows the exact
computation of critical indices; indeed the Bethe ansatz by itself allows only the (partially
rigorous) computation of spectral properties but not of the exponents.

The Haldane relations can be verified in the case of the Luttinger model, where the exact
solution of [8, 9] allows to calculate all the spectral quantities and the correlations. In the
case of the XYZ spin chain model, whose ground state energy can be computed by the Bethe
ansatz [10], the relations can be verified assuming the validity of the Kadanoff extended
relations. The Haldane conjecture, stating that such relations should be valid in a general
class of models (solvable or non-solvable) has been the subject of an impressive number of
studies, see e.g. [11] for a review; we mention the RG analysis in [12] (valid only for the
Luttinger model) and the (heuristic) probabilistic approach in [13].

In more recent times, the Kadanoff and the Haldane relations are seen as a consequence of
the fact that conformal field theory provides a full classification of 1+1 dimensional critical
systems and the spin chain should be in the class of universality of the U(1) conformal field
theory with charge 1. Of course, it is implicit the assumption of a continuum scaling limit
description of the spin chain models, and it is well known that a mathematical justification
of it is very difficult, see e.g. [14].

Some of the Kadanoff relations have been proved in [15] for several (solvable and non-
solvable) planar spin models, by rigorous Renormalization Group methods. In this paper we
will extend such results to prove one of the Haldane relations for generic non-solvable lattice
fermionic models or quantum spin chains with short range weak interaction. For definiteness
(but our results, as it is evident from the proof, could be easily extended to 1-d fermionic
continuum models) we consider a quantum spin chain with a non local interaction, whose
Hamiltonian is

H = −
L−1∑

x=1

[J1S
1
xS

1
x+1 + J2S

2
xS

2
x+1] − h

L∑

x=1

S3
x + λ

∑

1≤x,y≤L

v(x − y)S3
xS

3
y + U 1

L, (1)

where Sα
x = σα

x /2 for i = 1,2, . . . ,L and α = 1,2,3, σα
x being the Pauli matrices, and U 1

L,
to be fixed later, depends on the boundary conditions; finally v(x − y) = v(y − x) and
|v(x − y)| ≤ Ce−κ|x−y|. If v(x − y) = δ|x−y|,1/2 and h = 0, (1) is the Hamiltonian of
the XXZ spin chain in a zero magnetic field, which can be diagonalized by the Bethe
ansatz [10]; a solution is known also for the general XYZ model, always for h = 0 [16],
but in the other cases no exact solution is known.

It is well known that the operators a±
x ≡ ∏x−1

y=1(−σ 3
y )σ±

x are a set of anticommuting op-
erators and that, if σ±

x = (σ 1
x ± iσ 2

x )/2, we can write

σ−
x = e

−iπ
∑x−1

y=1 a+
y a−

y a−
x , σ+

x = a+
x e

iπ
∑x−1

y=1 a+
y a−

y , σ 3
x = 2a+

x a−
x − 1. (2)

Hence, if we fix the units so that J1 = J2 = 1 we get

H = −
L−1∑

x=1

1

2
[a+

x a−
x+1 + a+

x+1a
−
x ] − h

L∑

x=1

(
a+

x a−
x − 1

2

)

+ λ
∑

1≤x,y≤L

v(x − y)

(
a+

x a−
x − 1

2

)(
a+

y a−
y − 1

2

)
+ U 2

L, (3)
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where U 2
L is the boundary term in the new variables. We choose it so that the fermionic

Hamiltonian coincides with the Hamiltonian of a fermion system on the lattice with periodic
boundary conditions.

If Ox is a local monomial in the Sα
x or a±

x operators, we call Ox = eHx0Oxe
−Hx0

where x = (x, x0); moreover, if A = Ox1 · · ·Oxn , 〈A〉L,β = Tr[e−βH T(A)]/Tr[e−βH ], T be-
ing the time order product, denotes its expectation in the grand canonical ensemble, while
〈A〉T ;L,β denotes the corresponding truncated expectation. We will use also the notation
〈A〉T = limL,β→∞〈A〉T ;L,β .

In recent times, constructive Renormalization Group techniques, combined with asymp-
totic Ward Identities, have been applied to the XYZ model [17–19]. The extension to the
general spin chain model (1) is immediate and one can prove that, for small λ, J1 = J2 = 1
and large x,

〈a−
x a+

0 〉T ∼ g0(x)
1 + λf (λ)

(v2
s x

2
0 + x2)(η/2)

, (4)

where f (λ) is a bounded function (independent of x), η = a0λ
2 + O(λ3), with a0 > 0, and

g0(x) =
∑

ω=±

eiωpF x

vsx0 + iωx
, (5)

vs = vF + O(λ), pF = cos−1(h + λ) + O(λ), vF = sinpF . (6)

From (4) we see that the interaction has two main effects. The first one is to change the
value of the Fermi momentum from cos−1(h) to pF and the sound velocity from vF in the
non interacting case to vs . The second effect is that the power law decay is changed; the
2-point function is asymptotically given by the product of the non-interacting one (with a
different sound velocity) times an extra power law decay factor with non-universal index η.

It was also proved in [17–19] that the spin-spin correlation in the direction of the 3-axis
(or, equivalently, the fermionic density-density correlation) is given, for large x, by

〈S(3)
x S

(3)

0 〉T ∼ cos(2pF x)�3,a(x) + �3,b(x), (7)

�3,a(x) = 1 + A1(x)

2π2[x2 + (vsx0)2]X+ , (8)

�3,b(x) = 1

2π2[x2 + (vsx0)2]
{

x2
0 − (x/vs)

2

x2 + (vsx0)2
+ A2(x)

}
, (9)

with |A1(x)|, |A2(x)| ≤ C|λ| and X+ = 1−a1λ+O(λ2), a1 > 0. Finally, by using the results
of [21], one can prove that the Cooper pair density correlation, that is the correlation of the
operator ρc

x = a+
x a+

x′ + a−
x a−

x′ , x′ = (x + 1, x0), behaves as

〈ρc
xρ

c
0〉T ∼ 1 + A3(x)

2π2(x2 + v2
s x

2
0 )

X−
, (10)

with X− = 1 + a1λ + O(λ2), a1 being the same constant appearing in the first order of X+.
In the case J1 
= J2 the correlations decay faster than any power with rate ξ such that

ξ ∼ C|J1 − J2|ν̄ , (11)
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with ν̄ = 1 + a1λ + O(λ2), a1 being again the same constant appearing in the first order
of X+.

Several physical quantities are expressed in terms of the Fourier transform of the corre-
lations; in particular, if we call

�̂(p) = lim
β,L→∞

∫ β/2

−β/2
dx0

∑

x∈�

eipx〈S(3)
x S

(3)

0 〉T ;L,β, (12)

the susceptibility is given by

κ = lim
p→0

�̂(0,p). (13)

Note that, in the fermion system, κ = κcρ
2, where κc is the fermionic compressibility and ρ

is the fermionic density, see e.g. (2.83) of [20] or (3.16) of [12].
Our results can be summarized by the following theorem, providing relations between

the exponents and the susceptibility defined above.

Theorem 1 For small λ and J1 − J2 there exists an analytic function K(λ) such that

X+ = K, X− = K−1, (14)

ν̄ = 1

2 − K−1
, 2η = K + K−1 − 2, (15)

with

K = 1 − λ
v̂(0) − v̂(2pF )

π sinpF

+ O(λ2). (16)

Moreover, if J1 = J2,

�̂(p) = K

πvs

v2
s p

2

p2
0 + v2

s p
2

+ R(p), (17)

with vs = vF + O(λ) and R(p) continuous and such that R(0) = 0, so that,

κ = 1

π

K

vs

. (18)

The relations (14) and (15) are the extended scaling laws conjectured by Kadanoff [4]
and Luther and Peschel [5, 6]. The critical indices, as functions of λ, are non-universal and
depend on all details of the model; however, such non-universality is all contained in the
function K(λ) (which is expressed in our analysis as a convergent power series expansion),
and the indices have a simple universal expressions in terms of the parameter K .

From (17) we see that, analogously to what happens for the critical exponents, the am-
plitude of the dominant part, for p → 0, of the density-density correlation Fourier transform
verifies an universal relation in terms of K and vs ; on the contrary no universal relation is
expected to be true for the amplitude of the Fourier transform close to (±2pF ,0).

Equation (18) is an universal relation connecting the susceptibility defined in (13) with
K and vs ; it is one of the two relations conjectured by Haldane in [8, 9] (see (3) of [8, 9],
where vN ≡ (πκ)−1 and K ≡ e2φ). Note that in the case of the XYZ model (J1 
= J2) with
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h = 0 the exponent ν̄ has been computed by Baxter and it has been found, see (10.12.24)
of [16], if cos μ̄ = −J3/J1 = λ,

ν̄ = π

2μ̄
= 1 + 2λ

π
+ O(λ2). (19)

From (14) K−1 = e−2φ = 2(1 − μ̄

π
). Moreover from the Bethe ansatz solution [10] exact

expressions for vs and κ can be obtained,

vs = π

μ̄
sin μ̄, κ = [2π(π/μ̄ − 1) sin μ̄]−1, (20)

so that (18) is verified. In general κ,K,vs depend on the magnetic field h and the specific
form of the interaction v̂(k) (such dependence is simple at first order, see (16), but in general
quite complex), but our theorem shows that the Kadanoff and Haldane relations (14) and
(18) are still true. This is the first example in which such relations are proven in generic
non-solvable models.

The proof is based on a rigorous Renormalization Group analysis of the correlations of
the spin chain allowing to write them as convergent series in terms of a set of running cou-
pling constants. Subsequently, one introduces a reference model, given essentially by the
scaling limit of the spin chain, whose correlations can be also written as convergent series
in a set of running coupling constants which are asymptotically the same as the ones ap-
pearing in the spin chain analysis, if the coupling constant of the reference model is chosen
properly. The exponents in the two models coincide and, on the other hand, the Schwinger
functions of the reference model obey to Ward Identities, which imply the relations between
the exponents (14), (15) stated in the Theorem; the proof of this part of the theorem is very
similar to the one in [15] in the case of planar spin model. The main novelty of this paper is
the proof of the Haldane relation (18), so we will focus on its derivation. One starts from the
proof that the correlations of the spin chain and the reference models are asymptotically the
same, up to some renormalization constants (see Lemma 1). Such constants are expressed by
complex convergent expansions (see Appendix B for their lowest order computation), and
the validity of the relation (18) would be implied by the validity of certain relation between
such constants; however, it looks impossible to check directly these relations by using di-
rectly that expansions. On the other hand, there is a Ward Identity for the spin chain, that can
be computed in two different ways, either by using the equivalence with the reference model
or directly by the continuity equation (see Appendix B) following from the existence of a
well defined lattice Hamiltonian; this fact provides a relation between the renormalization
constants which at the end implies the relation (18).

The main ideas of our proof should be understood also from people who did not read our
previous papers; hence we shall refer to them for the proof of several technical results that
we need.

2 Proof of Theorem 1

As the interaction modifies the value of the Fermi momentum and of the sound velocity, it
is convenient to include some part of the free Hamiltonian in the interaction part, by writing
(3) in the following way (we will consider the case J1 = J2, but (14), (15) holds also for
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J1 − J2 not too large)

H = H0 + ν

L∑

x=1

a+
x a−

x − δ

L∑

x=1

[cospF a+
x a−

x − (a+
x+1a

−
x + a+

x a−
x+1)/2]

+ λ
∑

1≤x,y≤L

v(x − y)a+
x a−

x a+
y a−

y , (21)

with

H0 = − vs

vF

L∑

x=1

1

2
[a+

x a−
x+1 + a+

x+1a
−
x − 2 cospF a+

x a−
x ] (22)

and

cospF = −λ − h − ν, vs = vF (1 + δ). (23)

Note that, if H = H0, the Fourier transform of the 2-point function is singular at k =
(±pF ,0) and the sound velocity is vs . The parameter ν is chosen as a function of λ and
pF , so that the singularity of the Fourier transform of the two-point function corresponding
to H is fixed at k = (±pF ,0); the first equation in (23) gives the value of h corresponding,
in the model (3), to the chosen value of pF . On the contrary, the parameter δ is an unknown
function of λ and pF , whose value is determined by requiring that, in the renormalization
group analysis, the corresponding marginal term flows to 0; this implies that vs is the sound
velocity even for the full Hamiltonian H .

It is well known that the correlations of the quantum spin chain can be derived by the
following Grassmann integral, see [17]:

eWM(J,J̃ ,φ) =
∫

P (dψ)e−V(ψ)+∫
dx[Jxρx+J̃xjx]+∫

dx[φ+
x ψ−

x +φ−
x ψ+

x ], (24)

where ψ±
x and φ±

x are Grassmann variables, Jx and J̃x are commuting variables,
∫

dx is a

shortcut for
∑

x∈�

∫ β/2
−β/2 dx0, P (dψ) is a Grassmann Gaussian measure in the field variables

ψ±
x with covariance (the free propagator) given by

gM(x − y) = 1

βL

∑

k∈DL,β

χ(γ −Mk0)e
iδMk0eik(x−y)

−ik0 + (vs/vF )(cospF − cosk)
, (25)

where χ(t) is a smooth compact support function equal to 0 if |t | ≥ γ > 1 and equal
to 1 for |t | < 1, k = (k, k0), k · x = k0x0 + kx, DL,β ≡ DL × Dβ , DL ≡ {k = 2πn/L,

n ∈ Z,−[L/2] ≤ n ≤ [(L − 1)/2]}, Dβ ≡ {k0 = 2(n + 1/2)π/β,n ∈ Z} and

V(ψ) = λ

∫
dxdyṽ(x − y)ψ+

x ψ+
y ψ−

y ψ−
x + ν

∫
dxψ+

x ψ−
x

− δ

∫
dx[cospF ψ+

x ψ−
x − (ψ+

x+ε1
ψ−

x + ψ+
x ψ−

x+ε1
)/2],

with ε1 = (1,0), ṽ(x − y) = δ(x0 − y0)v(x − y). Moreover

ρx = ψ+
x ψ−

x , jx = (2ivF )−1[ψ+
x+ε1

ψ−
x − ψ+

x ψ−
x+ε1

]. (26)

Note that, due to the presence of the ultraviolet cut-off γ M , the Grassmann integral has a
finite number of degree of freedom, hence it is well defined. The constant δM = β/

√
M is in-

troduced in order to take correctly into account the discontinuity of the free propagator g(x)
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at x = 0, where it has to be defined as limx0→0− g(0, x0); in fact our definition guarantees
that limM→∞ gM(x) = g(x) for x 
= 0, while limM→∞ gM(0,0) = g(0,0−).

We shall use the following definitions:

G2,1
ρ (x,y, z) = lim

−l,N→∞
∂

∂Jx

∂2

∂φ+
y ∂φ−

z
WM(J, J̃ , φ)|J=J̃=φ=0,

G
2,1
j (x,y, z) = lim

−l,N→∞
∂

∂J̃x

∂2

∂φ+
y ∂φ−

z
WM(J, J̃ , φ)|J=J̃=φ=0,

(27)

G2(y, z) = lim
−l,N→∞

∂2

∂φ+
y ∂φ−

z
WM(J, J̃ , φ)|J=J̃=φ=0,

G0,2
ρ,ρ(x,y) = lim

−l,N→∞
∂2

∂Jx∂Jy
WM(J, J̃ , φ)|J=J̃=φ=0.

The Fourier transforms Ĝ2(k) and Ĝ0,2
ρ,ρ(p) of G2(y, z) and G2,0

ρ,ρ(x,y) are defined in a way

analogous to the definition of �̂(p) in (12). Moreover, we define the Fourier transforms of
G2,1

α , α = ρ, j , so that

G2,1
α (x,y, z) = 1

Lβ

∑

k,p

eipx−i(k+p)y+ikzĜ2,1
α (k,k + p). (28)

The Grassmann integral (24) has been analyzed in [17–19] by Renormalization Group
methods; by choosing properly the counterterms ν and δ, one gets expression which
are analytic in the coupling constants, uniformly in β,L,M . The correlations obtained
from the Grassmann integral coincide with the correlations of the Hamiltonian model
(21) as M → ∞. By such analysis the asymptotic expressions (7) and (10) are proved, and
the critical indices η, X+, X−, and ν̄ can be represented as power series in the variable
r = λ−∞/vs , where λ−∞ = λ + O(λ2) is the asymptotic effective coupling. Such series are
convergent for r small enough and their coefficients are universal, that is model indepen-
dent. Moreover, vs and λ−∞ can be represented as power series of λ, convergent near λ = 0
and depending on all details of the model, so that this property is true also for the critical
indices. The fact that the critical indices can be represented as universal functions of a single
parameter implies that they can be all expressed in terms of only one of them; however, to
compute explicitly such relations, by only using the complicated expansions in terms of r ,
looks impossible.

The key observation is to take advantage from the gauge symmetries present in the theory
in the formal scaling limit. We introduce a continuum fermion model, essentially coincid-
ing with the formal scaling limit of the fermion model with Hamiltonian (21) (which is a
QFT model), regularized by a non local fixed interaction, together with an infrared γ l and
ultraviolet γ N momentum cut-offs, −l,N � 0. The limit N → ∞, followed from the limit
l → −∞, will be called the limit of removed cut-offs. The model is expressed in terms of
the following Grassmann integral:

eWl,N (J,J̃ ,φ) =
∫

PZ(dψ [l,N])e−V (N)(
√

Zψ [l,N])+∑
ω=±

∫
dx[Z(3)Jx+ω Z̃(3)J̃x]ρx,ω

× eZ
∑

ω=±
∫

dx[ψ+[l,N]
x,ω φ−

x,ω+φ+
x,ωψ [l,N]], (29)
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where

ρx,ω = ψ [l,N]+
x,ω ψ [l,N]−

x,ω , (30)

x ∈ �̃ and �̃ is a square subset of R
2 of size γ −l , say γ −l/2 ≤ |�̃| ≤ γ −l , PZ(dψ [l,N]) is

the fermionic measure with propagator

1

Z
g

[l,N]
th,ω (x − y) = 1

Z

1

L2

∑

k

eikx χl,N (k)

−ik0 + ωck
, (31)

where Z and c are two parameters, to be fixed later, and χl,N (k) is the cutoff function.
Moreover, the interaction is

V (N)(ψ) = λ∞
2

∑

ω

∫
dx

∫
dyv0(x − y)ψ+

x,ωψ−
x,ωψ+

y,−ωψ−
y,−ω, (32)

where v0(x − y) is a rotational invariant potential, of the form

v0(x − y) = 1

L2

∑

p

v̂0(p)eip(x−y), (33)

with |v̂0(p)| ≤ Ce−μ|p|, for some constants C, μ, and v̂0(0) = 1. We shall use the following
definitions, analogous to the definitions (27) of the quantum spin chain:

G
2,1
th,ρ;ω(x,y, z) = lim

−l,N→∞
∂

∂Jx

∂2

∂φ+
y,ω∂φ−

z,ω
Wl,N (J, J̃ , φ)|J=J̃=φ=0,

G
2,1
th,j ;ω(x,y, z) = lim

−l,N→∞
∂

∂J̃x

∂2

∂φ+
y,ω∂φ−

z,ω
Wl,N (J, J̃ , φ)|J=J̃=φ=0,

(34)

G2
th;ω(y, z) = lim

−l,N→∞
∂2

∂φ+
y,ω∂φ−

z,ω
Wl,N (J, J̃ , φ)|J=J̃=φ=0,

G
0,2
th,ρ,ρ(x,y) = lim

−l,N→∞
∂2

∂Jx∂Jy
Wl,N (J, J̃ , φ)|J=J̃=φ=0.

The Fourier transforms Ĝ2
th;ω(k) and Ĝ

0,2
th,ρ,ρ(p) of G2

th;ω(y, z) and G
2,0
th,ρ,ρ(x,y) are defined

in a way analogous to the definition of �̂(p) in (12). Moreover, we define the Fourier trans-
forms of G

2,1
th,α;ω , α = ρ, j , as in (28).

In §3 of [22] (see also §4 of [15]) it has been proved that, for small λ̃∞ and for non-
exceptional momenta (that is k, p and k − p different from 0),

Z

[
−ip0

1

Z(3)
Ĝ

2,1
th,ρ;ω(k,k + p) + ωp c

1

Z̃(3)
Ĝ

2,1
th,j ;ω(k,k + p)

]

= A[Ĝ2
th;ω(k) − Ĝ2

th;ω(k + p)],
(35)

Z

[
−ip0

1

Z̃(3)
Ĝ

2,1
th,j ;ω(k,k + p) + ωp c

1

Z(3)
Ĝ

2,1
th,ρ;ω(k,k + p)

]

= ωĀ[Ĝ2
th;ω(k) − Ĝ2

th;ω(k + p)],
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with

A−1 = 1 − τ, Ā−1 = 1 + τ, τ = λ∞
4πc

. (36)

Equations (35) are the Ward Identities associated to the invariance of the formal Lagrangian
with respect to local and local chiral Gauge transformations. The fact that A, Ā are not equal
to 1 is a well known manifestation of the anomalies in quantum field theory; naively, by a
gauge transformation in the non regularized ill defined Grassmann integrals, one would get
similar expressions with A = Ā = 1. Finally, the linearity of A−1, Ā−1 in terms of λ∞ is a
property called anomaly non-renormalization and it depends crucially on the regularizations
used; with different regularizations such a property could be violated, see [21].

An easy extension of the results given in [22] allows us to deduce also a set of Ward
Identities for the continuum model correlations of the density operator ρx,ω defined in (30).
To be more precise, let us consider the functional

eW̃(J ) =
∫

PZ(dψ)e−V (N)(
√

Zψ)+∑
ω

∫
dxJx,ωρx,ω , (37)

and let us define

Gω,ω′(x,y) = lim
−l,N→∞

∂2

∂Jx,ω∂Jy,ω′
W̃(J )|J=0. (38)

In Appendix A we shall prove that, in the limit −l,N → ∞,

Dω(p)Ĝω,ω(p) − τ v̂0(p)D−ω(p)Ĝ−ω,ω(p) + 1

4πcZ2
D−ω(p) = 0,

D−ω(p)Ĝ−ω,ω(p) − τ v̂0(p)Dω(p)Ĝω,ω(p) = 0,

(39)

where

Dω(p) = −ip0 + ωcp. (40)

By using (39) and v̂0(p) = 1 + O(p), we get:

Ĝω,ω(p) = − 1

Z2

1

4πc(1 − τ 2)

D−ω(p)

Dω(p)
+ O(p),

(41)

Ĝ−ω,ω(p) = − 1

Z2

τ

4πc(1 − τ 2)
+ O(p),

which implies, after a few simple calculations, that

Ĝ
0,2
th,ρ,ρ = − 1

4πcZ2

(Z(3))2

1 − τ 2

[
D−(p)

D+(p)
+ D+(p)

D−(p)
+ 2τ

]
+ O(p). (42)

The crucial point is that it is possible to choose the parameters of the continuum model
so that the correlations in the two models are the same, up to small corrections, for small
momenta.

Lemma 1 Given λ small enough, there are constants Z, Z(3), Z̃(3), λ∞, depending ana-
lytically on λ, such that, if we put c = vs , the critical indices of the two models coincide.
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Moreover, if κ ≤ 1 and |p| ≤ κ ,

Ĝ0,2
ρ,ρ(p) = Ĝ

0,2
th,ρ,ρ(p) + Aρ,ρ(p), (43)

with Aρ,ρ(p) continuous in p and O(λ). Finally, if we put pω
F = (0,ωpF ) and we suppose

that 0 < κ ≤ |p|, |k′|, |k′ − p| ≤ 2κ , 0 < ϑ < 1, then

Ĝ2,1
ρ (k′ + pω

F ,k′ + p + pω
F ) = Ĝ

2,1
th,ρ;ω(k′,k′ + p)[1 + O(κϑ)],

Ĝ
2,1
j (k′ + pω

F ,k′ + p + pω
F ) = Ĝ

2,1
th,j ;ω(k′,k′ + p)[1 + O(κϑ)], (44)

Ĝ2(k′ + pω
F ) = Ĝ2

th,ω(k′)[1 + O(κϑ)].

This Lemma will be proved in the next section; we now exploit its implications.
By combining (44) and (35) we find that

− ip0 Ĝ2,1
ρ (k′ + pω

F ,k′ + p + pω
F ) + ωp ṽJ Ĝ

2,1
j (k′ + pω

F ,k′ + p + pω
F )

= Z(3)

(1 − τ)Z

[
Ĝ2(k′ + pω

F ) − Ĝ2(k′ + p + pω
F )

][1 + O(κϑ)] (45)

and

− ip0 Ĝ
2,1
j (k′ + pω

F ,k′ + p + pω
F ) + ωp ṽNĜ2,1

ρ (k′ + pω
F ,k′ + p + pω

F )

= Z̃(3)

(1 + τ)Z

[
Ĝ2(k′ + pω

F ) − Ĝ2(k′ + p + pω
F )

][1 + O(κϑ)], (46)

with

ṽN = vs

Z(3)

Z̃(3)
, ṽJ = vs

Z̃(3)

Z(3)
. (47)

On the other hand, a WI for the model (3) can be derived directly from the commutation
relations, see Appendix B; one gets

− ip0 Ĝ2,1
ρ (k′ + pω

F ,k′ + p + pω
F ) + ωp vF Ĝ

2,1
j (k′ + pω

F ,k′ + p + pω
F )

= [
Ĝ2(k′ + pω

F ) − Ĝ2(k′ + p + pω
F )

][1 + O(κϑ)]. (48)

Hence, if we compare (48) with (45), we get the identities

Z(3)

(1 − τ)Z
= 1, ṽJ = vF . (49)

Moreover, in Appendix B we also show that

Ĝ0,2
ρ,ρ(p) = 0, if p = (0,p0), (50)

and this fixes the value of Aρρ(0) so that

Ĝ0,2
ρ,ρ(p) = 1

4πvsZ2

(Z(3))2

1 − (λ∞/4πvs)2

[
2 − D−(p)

D+(p)
− D+(p)

D−(p)

]
+ R(p), (51)
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with R(0) = 0. Since �̂(p) = Ĝ0,2
ρ,ρ(p), by using (49) and (13), we get (17) and (18), with

K = 1

Z2

(Z(3))2

1 − (λ∞/4πvs)2
= 1 − (λ∞/4πvs)

1 + (λ∞/4πvs)
. (52)

It has been proved in Theorem 4.1 of [15] (where we used c = 1) that the critical indices
of the model (29) have simple expressions in terms of λ∞; if we take (4.26) of [15] and we
put τ = λ∞/4πvs , we get:

X+ = 1 − (λ∞/2πvs)

1 + (λ∞/4πvs)
, X− = 1 + (λ∞/2πvs)

1 − (λ∞/4πvs)
; (53)

this implies the relations (14), with K given by (52). Equation (16) follows from the remark
that, at the first order, λ∞ = λ−∞, while λ−∞, which was imposed to be equal in the two
models, is related to λ (always at the first order) by the relation λ−∞ = 2λ[v̂(0) − v̂(2pF )].
By using the identity (4.21) of [15] (where η is denoted ηz), we get also the second identity
in (15). Finally the above RG analysis can be repeated also in the case of J1 − J2 not too
large, see [17]; the exponents are independent from J1 − J2 and a new exponent ν̄ appears.
The first identity in (15) is proved as (1.11) of [15]; note that ν̄ is different from the index ν

appearing in [15], but one can see that this difference only implies that one has to replace,
in (1.11) of [15], x+ with x−. The proof of Theorem 1 is completed.

Remark 1 Note that in the WI (45), (46) for the model (21) three different velocities appear.
This is due to the fact that the irrelevant operators (in the RG sense) break the relativistic
symmetries present in the model in the scaling limit and produce different renormalization
of the velocities. Note also that the velocities ṽN , ṽJ defined in (47) verify the universal
relation

ṽN ṽJ = v2
s . (54)

Remark 2 The constraints (49) and (50) on the renormalization parameters of the continuum
model, which describes the large distance behavior, are a consequence of the existence of a
well defined lattice Hamiltonian.

3 Proof of Lemma 1

The proof of the lemma is based on the RG analysis of the Grassmann integrals (24) and
(29), described in [17–19] and [21, 22], respectively.

Let us recall briefly the analysis of 24. Let T 1 be the one dimensional torus, ‖k − k′‖T 1

the usual distance between k and k′ in T 1 and ‖k‖ = ‖k − 0‖. We introduce a scaling
parameter γ > 1 and a positive function χ(k′) ∈ C∞(T 1 × R), k′ = (k′, k0), such that
χ(k′) = χ(−k′) = 1 if |k′| < t0 = a0vs/γ and = 0 if |k′| > a0 where a0 = min{pF

2 ,
π−pF

2 }
and |k′| =

√
k2

0 + (vs‖k′‖T 1)2. The above definition is such that the supports of χ(k−pF , k0)

and χ(k + pF , k0) are disjoint and the C∞ function on T 1 × R

f̂1(k) ≡ 1 − χ(k − pF , k0) − χ(k + pF , k0) (55)

is equal to 0, if [‖vs(|k| − pF )‖T 1 ]2 + k2
0 < t2

0 .
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We define also, for any integer h ≤ 0,

fh(k′) = χ(γ −hk′) − χ(γ −h+1k′). (56)

We have

χ(k′) =
0∑

h=hL,β

fh(k′), (57)

where

hL,β = min{h : t0γ h+1 >
√

(πβ−1)2 + (vsπL−1)2}. (58)

Note that, if h ≤ 0, fh(k′) = 0 for |k′| < t0γ
h−1 or |k′| > t0γ

h+1, and fh(k′) = 1, if
|k′| = t0γ

h. Let us now define:

f̂h(k) = fh(k − pF , k0) + fh(k + pF , k0). (59)

This definition implies that, if h ≤ 0, the support of f̂h(k) is the union of two disjoint sets,
A+

h and A−
h . In A+

h , k is strictly positive and ‖k − pF ‖T 1 ≤ t0γ
h ≤ t0, while, in A−

h , k is
strictly negative and ‖k + pF ‖T 1 ≤ t0γ

h. The label h is called the scale or frequency label.
Note that

1 =
1∑

h=hL,β

f̂h(k); (60)

hence, if we approximate pF by (2π/L)(nF + 1/2), nF equal to the integer part of
LpF /(2π), and we define D′

L = {k′ = 2(n + 1/2)π/L,n ∈ Z,−[L/2] ≤ n ≤ [(L − 1)/2]}
and D′

L,β = D′
L × Dβ , we can write:

g(x − y) = g(1)(x − y) +
∑

ω=±

0∑

h=hL,β

e−ipF (x−y)g(h)
ω (x − y),

g(1)(x − y) = 1

βL

∑

k∈DL,β

e−ik(x−y) f̂1(k)

−ik0 + (vs/vF )(cospF − cos k)
, (61)

g(h)
ω (x − y) = 1

βL

∑

k′∈D′
L,β

e−ik′(x−y) fh(k′)
−ik0 + Eω(k′)

,

where

Eω(k′) = ωvs sink′ + (1 + δ) cospF (1 − cos k′). (62)

Let us now describe the perturbative expansion of W ; for simplicity we shall consider
only the case φ = 0. We can write:

eW(J,J̃ ,0) =
∫

P (dψ≤0)

∫
P (dψ(1))e−V(ψ)+∫

dx[Jxρx+J̃xjx]

= e−LβE0

∫
P (dψ≤0)e−V (0)(ψ≤0)+B(0)(ψ≤0,J,J̃ ), (63)
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where, if we put x = (x1, . . . ,x2n), ω = (ω1, . . . ,ω2n) and ψx,ω = ∏n

i=1 ψ+
xi ,ωi

∏2n

i=n+1 ψ−
xi ,ωi

,

the effective potential Ṽ (0)(ψ) can be represented as

V (0)(ψ) =
∑

n≥1

∑

ω

∫
dxW

(0)

ω,2n(x)ψx,ω, (64)

the kernels W
(0)

ω,2n(x) being analytic functions of λ and ν near the origin; if |ν| ≤ C|λ| and
we put k = (k1, . . . ,k2n−1), their Fourier transforms satisfy, for any n ≥ 1, the bounds, see
§2.4 of [17],

|Ŵ (0)

ω,2n(k)| ≤ Cn|λ|max{1,n−1}. (65)

A similar representation can be written for the functional B(0)(ψ≤0, J, J̃ ), containing all
terms which are at least of order one in the external fields, including those which are inde-
pendent on ψ≤0.

The integration of the scales h ≤ 0 is done iteratively in the following way. Suppose that
we have integrated the scale 0,−1,−2, . . . , j , obtaining

eW(J,J̃ ,0) = e−LβEj

∫
PZj ,Cj

(dψ≤j )e
−V (j)(

√
Zj ψ≤j )+B(j)(

√
Zj ψ≤j ,J,J̃ )

, (66)

where, if we put Cj(k′)−1 = ∑j

h=hL,β
fh(k′), PZj ,Cj

is the Grassmann integration with prop-
agator

1

Zj

g(≤j)
ω (x − y) = 1

Zj

1

βL

∑

k∈D′
L,β

eik(x−y)
C−1

j (k)

−ik0 + Eω(k′)
, (67)

V (j)(ψ) is of the form

V (j)(ψ) =
∑

n≥1

∑

ω

∫
dxW

(j)

ω,2n(x)ψx,ω, (68)

and B(j)(ψ≤j , J, J̃ ) contains all terms which are at least of order one in the external fields,
including those which are independent on ψ≤j . For j = 0, Z0 = 1 and the functional V (0)

and B(0) are exactly those appearing in (63).
First of all, we define a localization operator (see [17, 18] for details) in the following

way:

L V (j)(
√

Zjψ) = γ jnj

Zj

βL

∑

k

ψ+
k,ωψ−

k,ω + aj

Zj

βL

∑

k

Eω(k)ψ+
k,ωψ−

k,ω

+ zj

Zj

βL

∑

k

(−ik0)ψ
+
k,ωψ−

k,ω

+ lj
Z2

j

(βL)4

∑

k1,k′,p
ψ+

k,+ψ−
k−p,+ψ+

k′,−ψ−
k′+p,−, (69)

L B(j)(
√

Zjψ) = Z
(1)
j

(βL)2

∑

k,p

Jp

[∑

ω

ψ+
k,ωψ−

k−p,ω

]

+ Z
(2)
j

(βL)2

∑

k,p

Jp+2ωpF

[∑

ω

ψ+
k,ωψ−

k−p,−ω

]
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+ Z̃
(1)
j

(βL)2

∑

k,p

Jp

[∑

ω

ωψ+
k,ωψ−

k−p,ω

]

+ Z̃
(2)
j

(βL)2

∑

k,p

J̃p+2ωpF

[∑

ω

ωψ+
k,ωψ−

k−p,−ω

]
, (70)

where pF = (pF ,0). This definitions are such that the difference between −V (j) + B(j) and
−L V (j) + L B(j) is made of irrelevant terms.

The constants appearing in (69) and (70) are evaluated in terms of the values of the
corresponding kernels at zero external momenta. Since the space momentum k of ψ+

k,ω is
measured from the Fermi surface, this means that the external momenta corresponding to
the fermion variables are put equal to (ωpF ,0), while p is put equal to (0,0). On the other
hand, it is easy to see that the kernel multiplying Jψ+ψ− is even in the exchange k → −k

(k is here the true space momentum, not the momentum measured from the Fermi surface),
since both the propagator and the interaction are even, while the kernel multiplying J̃ψ+ψ−
is odd in the exchange k → −k, because of the parity properties of the current jx. These
considerations are used in the definition of the constants in (70).

We then renormalize the integration measure, by moving to it some of the quadratic terms
in the r.h.s. of (69), that is zj (βL)−1

∑
k[−ik0 + Eω(k)]ψ+

k,ωψ−
k,ω; the Grassmann integral

in the r.h.s. of (66) takes the form:
∫

PZ̃j−1,Cj
(dψ(≤j))e

−Ṽ (j)(
√

Zj ψ≤j )+B(j)(
√

Zj ψ≤j ,J,J̃ )
, (71)

where Ṽ (j) is the remaining part of the effective interaction and PZ̃j−1,Cj
(dψ≤j ) is the mea-

sure whose propagator is obtained by substituting in (67) Zj with

Z̃j−1(k) = Zj [1 + zjCj (k)−1]. (72)

It is easy to see that we can decompose the fermion field as ψ≤j = ψ≤j−1 + ψ(j), so that

PZ̃j−1,Cj
(dψ≤j ) = PZj−1,Cj−1(dψ(≤j−1))P

Zj−1,f̃ −1
j

(dψ(j)), (73)

where f̃j (k) (see (2.90) of [17]) has the same support and scaling properties as fj (k). Hence,
if make the field rescaling ψ → [√Zj−1/

√
Zj ]ψ and we call V̂ (j)(

√
Zj−1ψ

≤j ) the new
effective potential, we can write (71) in the form

∫
PZj−1,Cj−1(dψ(≤j−1))

∫
P

Zj−1,f̃ −1
j

(dψ(j))

× e
−V̂ (j)(

√
Zj−1ψ≤j )+B̂(j)(

√
Zj−1ψ≤j ,J,J̃ )

. (74)

By performing the integration over ψ(j), we finally get (66), with j − 1 in place of j .
In order to analyze the result of this iterative procedure, we note that L V̂ (j)(ψ) can be

written as

L V̂ (j)(ψ) = γ jνjFν(ψ) + δjFα(ψ) + λjFλ(ψ), (75)

where Fν(ψ), Fα(ψ) and Fλ(ψ) are the functions of ψ , which appear in (69) in the terms
proportional to nj , aj and lj , respectively. νj = (

√
Zj/

√
Zj−1)nj , δj = (

√
Zj/

√
Zj−1)(aj −
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zj ) and λj = (
√

Zj/
√

Zj−1)
2lj are called the running couplings (r.c.) on scale j . In The-

orem (3.12) of [17] it is proved that the kernels of V̂ (j) and B̂(j) are analytic as functions
of the r.c., provided that they are small enough. One has then to analyze the flow of the r.c.
(the beta function) as j → −∞. We shall now summarize the results, explained in detail in
[17, 19].

The propagator g̃(j)
ω (x − y) of the single scale measure P

Zj−1,f̃ −1
j

, can be decomposed as

g̃(j)
ω (x − y) = 1

Zj

g
(j)

th,ω(x − y) + rj (x − y), (76)

where

1

Zj

g
(j)

th,ω(x − y) = 1

Zj

1

βL

∑

k∈DL,β

eik(x−y) fj (k)

−ik0 + ωvsk
(77)

describes the leading asymptotic behavior, while the remainder rj (x − y) satisfies, for any
M > 0 and ϑ < 1, the bound

|rj (x − y)| ≤ γ (1+ϑ)j

Zj

CM,ϑ

1 + (γ j |x − y|M)
. (78)

We call Z
(th)
j the values of Zj one would obtain by substituting V (0) with L V (0) and by

putting rh = 0 for any h ≥ j and we observe that, by (4.50) of [17],

∣∣∣∣
Zj

Zj−1
− Z

(th)
j

Z
(th)

j−1

∣∣∣∣ ≤ Cϑλ2γ ϑj . (79)

(76) and (79) imply that, see §4.6 of [17], the r.c. satisfy recursive equations of the form:

λj−1 = λj + β
(j)

λ (λj , . . . , λ0) + β̄
(j)

λ (λj , δj , νj ; . . . ;λ0, δ0, ν0),

δj−1 = δj + β
(j)

δ (λj , δj , νj ; . . . ;λ0, δ0, ν0), (80)

νj−1 = γ νj + β(j)
ν (λj , δj , νj ; . . . ;λ0, δ0, ν0),

where β
(j)

λ , β̄
(j)

λ , β
(j)

δ , β(j)
ν can be written as convergent expansions in their arguments, if

εj = maxj≤h≤0 max{|λh|, |δh|, |νh|} is small enough. By definition, β
(j)

λ is given by a sum of
multiscale graphs (collected in Gallavotti–Nicolò trees, not to be confused with Feynman
graphs; their precise definition is, for example, in §3 of [17]), containing only λ-vertices
with scale ≤ 0 and in which the propagators g(h)

ω and the wave function renormalizations
Zh, 0 ≥ h ≥ j , are replaced by g

(h)
th,ω and Z

(th)
h , 0 ≥ h ≥ j ; β̄

(j)

λ contains the correction terms
together with the remainder of the expansion.

The following crucial property, called vanishing of the Beta function, was proved by
means of Ward Identities in [19]; for any ϑ < 1,

|β(j)

λ (λj , . . . , λj )| ≤ Cϑ |λj |2γ ϑj . (81)

It is also possible to prove that, for a suitable choice of δ, ν = O(λ), δj , νj = O(γ ϑj λ̄j ),
if λ̄j = supk≥j |λk|, and this implies, by the short memory property (exponential decreasing
contribution of the graphs with propagators of scale h > j , as h − j grows, see the remark
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after (4.31) of [17]), that β̄
(j)

λ = O(γ ϑj λ̄2
j ), so that the sequence λj converges, as j → −∞,

to a smooth function λ−∞(λ) = λ + O(λ2), such that

|λj − λ−∞| ≤ Cϑλ2γ ϑj . (82)

In a similar way we can also analyze the renormalization constants Z
(α)
j and Z̃

(α)
j , α = 1,2,

defined in (70), and the field strength renormalization Zj ; we can write:

Zj−1

Zj

= 1 + β(j)
z (λj , . . . , λ0) + β̄(j)

z (λj , δj ; . . . , λ0, δ0), (83)

Z
(α)

j−1

Z
(α)
j

= 1 + β
(j)

(ρ,α)(λj , . . . , λ0) + β̄
(j)

(ρ,α)(λj , δj ; . . . , λ0, δ0), (84)

Z̃
(α)

j−1

Z̃
(α)
j

= 1 + β
(j)

(J,α)(λj , . . . , λ0) + β̄
(j)

J,α(λj , δj ; . . . , λ0, δ0), (85)

where, by definition, the β
(j)
t functions (with t = z, (ρ,α) or (J,α)) are given by a sum of

multiscale graphs, containing only λ-vertices with scale ≤ 0 and in which the propagators
g(h)

ω and the renormalization constants Zh, Z(α)
h , Z̃(α)

h , 0 ≥ h ≥ j , are replaced by g
(h)
th,ω , Z(th)

h ,

Z
(th,α)
h and Z̃

(th,α)
h (the definition of Z

(th,α)
h , Z̃

(th,α)
h is analogue to the one of Z

(th)
h ); the β̄

(j)
t

functions contain the correction terms together the remainder of the expansion. Note that,
by definition, the constants Z

(th)
j are exactly those generated by (83) with β̄

(j)
z = 0. Note that

β̄
(j)
t = O(λjγ

ϑj ) and, by using (82) and the short memory property (see e.g. §4.9 of [17])

β
(j)
t (λj , . . . , λ0) = β

(j)
t (λ−∞, . . . , λ−∞) + O(λγ ϑh). (86)

This implies that there exist, if w is small enough, analytic functions ηt (w), t =
z, (ρ,α), (J,α), of order λ2 for t = z, (ρ,1), (J,1) and order λ for t = (ρ,2), (J,2), such
that

| logγ (Zj−1/Zj ) − ηz(λ−∞/vs)| ≤ Cϑλ2γ ϑj ,

| logγ (Z
(α)

j−1/Z
(α)
j ) − ηρ,α(λ−∞/vs)| ≤ Cϑλ2γ ϑj , (87)

| logγ (Z̃
(α)

j−1/Z̃
(α)
j ) − ηJ,α(λ−∞/vs)| ≤ Cϑλ2γ ϑj .

The fact that the critical indices ηt are functions of λ−∞/vs (not of λ−∞ and vs separately)
is not stressed in [17, 18], but follows very easily from dimensional arguments. It is also
easy to see that (see [18], §3.4), since the propagator (77) satisfies the symmetry property

ĝ
(j)

th,ω(k, k0) = −iωĝ
(j)

th,ω(−k0/vs, vsk), (88)

then ηρ,α(w) = ηJ,α(w), α = 1,2. Moreover, by using the approximate Ward identities as-
sociated to the linearity in k of ĝ

(j)

th,ω(k)−1, one can show (see Theorem 5.6 of [17]) that
ηz = ηρ,1.

The analysis of the functional (29) can be done in a similar way. Even in this case, we
shall only sketch the main results, by referring to [22] and [15] for more details. Again we
perform a multiscale integration, but now we have to consider two different regimes: the
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first regime, called ultraviolet, contains the scales 0 ≤ h ≤ N , while the second one contains
the scales h < 0, and is called infrared.

After the integration of the ultraviolet scales, see [15, 22] (where the external fields J, J̃

are substituted by two equivalent fields Jω,ω = ±1), we can write the r.h.s. of (29), with
φ = 0, as

lim
l→−∞

lim
N→∞

∫
PZ(dψ(≤0))e−V̄ (0)(ψ(≤0))+B̄(0)(ψ(≤0),J,J̃ ), (89)

where the integration measure has a propagator Z−1g
(≤0)
th,ω (x − y), given by (31) with N = 0;

moreover, V̄ (0) and B̄(0) are functionals similar to the functionals V (0) and B(0) of (63), with
the following main differences. First of all, L V̄ (0) can be written as in (69), with Eω(k) =
cωk, n0 = 0, a0 = z0 (these two properties easily from the symmetries of the propagator)
and λ0 replaced by a new constant λ̃0; moreover, L B̄(0) can be written as in (70), with
Z

(2)

0 = Z̃
(2)

0 = 0 (since no term proportional to ψ+
x,ωψ−

x,−ω can be present) and Z
(1)

0 , Z̃
(1)

0

replaced by two new constants Z
(3)

0 , Z̃
(3)

0 . Hence, we can analyze (89) as we did for (63),
but now we have only one r.c., to be called λ̃j , and three renormalization constants, Z̃j , Z

(3)
j

and Z̃
(3)
j , taking the place of Zj , Z

(1)
j and Z̃

(1)
j , respectively. It follows that λ̃j → λ̃−∞, as

j → −∞, with λ̃−∞ an analytic function of λ̃0, such that λ̃−∞ = λ̃0 + O(λ̃2
0). On the other

hand, λ̃0 is an analytic function of λ∞ and λ̃0 = λ∞ + O(λ2∞), see [22]; hence there exists
an analytic function h(w), such that, if λ∞ is small enough,

λ̃−∞ = h(λ∞). (90)

Moreover, the flow equations of the new renormalization constants can be written as in (83),
(84), (85), with different functions β

(j)
t and β̄

(j)
t , t = z, (ρ,3), (J,3). However, if we put

c = vs, (91)

the functions β
(j)
t are the same as before, as a consequence of the definitions (77) and (31).

It is then an immediate consequence of (76), (79) and (86) that

| logγ (Z̃j−1/Z̃j ) − ηz(λ̃−∞/vs)| ≤ Cϑλ2γ ϑj ,

| logγ (Z
(3)

j−1/Z
(3)
j ) − ηρ,1(λ̃−∞/vs)| ≤ Cϑλ2γ ϑj , (92)

| logγ (Z̃
(3)

j−1/Z̃
(3)
j ) − ηJ,1(λ̃−∞/vs)| ≤ Cϑλ2γ ϑj ,

where ηz(w), ηρ,1(w) and ηJ,1(w) are exactly the same functions appearing in (87). Hence,
if we choose λ∞, given λ, so that

λ̃−∞ = λ−∞, (93)

which is possible if λ is small enough, the critical indices in the spin or in the continuum
model are the same.

We have now to show that the parameters Z, Z(3) and Z̃(3) of the continuum model (with
c = vs ) can be chosen so that (43) is true. To begin with, we prove that they can fixed so
that, for any j ≤ 0,

|Zj − Z̃j | ≤ Cϑ |λ|γ ϑ
2 j ,

(94)
|Z(1)

j − Z
(3)
j | ≤ Cϑ |λ|γ ϑ

2 j , |Z̃(1)
j − Z̃

(3)
j | ≤ Cϑ |λ|γ ϑ

2 j .
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Let us prove the first bound. By using (87) and (92), we see that there exist bj (λ), b, b̃j (λ)

and b̃, such that

Zj = bj (λ)γ −jηz , Z̃j = Zb̃j (λ)γ −jηz , (95)

with |bj (λ) − b| ≤ Cϑ |λ|γ ϑj and |b̃j (λ) − b̃| ≤ Cϑ |λ|γ ϑj . Hence, since ϑ − ηz ≥ ϑ/2, for λ

small enough,

|Zj − Z̃j | = Zj

∣∣∣∣1 − Zb̃j (λ)

bj (λ)

∣∣∣∣ ≤ Cϑ |λ|γ ϑ
2 j , (96)

provided that we choose Z = b/b̃. In the same way we can choose the values of Z(3) and
Z̃(3).

Note that the values of Z(3) and Z̃(3) are expected to be different, even if the asymptotic
behavior, as j → −∞, of Z

(3)
j and Z̃

(3)
j is the same. This follows from the fact that the

“remainder” rj in the representation (76) of the propagator breaks the symmetry (88), which
the relation ηz = ηρ,1 is based on. This expectation is confirmed by an explicit first order
calculation, see Appendix C; we see that Z(3) = 1−aλ+O(λ2) and Z̃(3) = 1+aλ+O(λ2),
with

a = 1

2πvs

[v̂(0) − v̂(2pF )]. (97)

Note that this expression is in agreement with the identity (52), since, at first order λ−∞ =
λ∞ = 2λ[v̂(0) − v̂(2pF )].

In order to complete the proof of (43), we use the representation of 〈S(3)
x S

(3)

0 〉T , given in
[17], (1.13), that is

〈S(3)
x S

(3)

0 〉T = cos(2pF x)�a(x) + �b(x) + �c(x), (98)

where the first two terms represent the leading asymptotic behavior, while �c(x) is the
remainder. In [17] we proved that, if ϑ < 1 and n is a positive integer, then

|∂n�a(x)| ≤ Cn

|x|2X++n
, |�c(x)| ≤ Cϑ

|x|2+ϑ
, (99)

where X+ = K is the critical index (16). Moreover, by definition (see §5.9 of [17]), �b
x

is a sum of multiscale graphs containing only λ-vertices with scale ≤ 0 and in which the
propagators g(h)

ω and the renormalization constants Zh, Z
(1)
h , 0 ≥ h ≥ j , are replaced by

g
(h)
th,ω and Z

(th)
h , Z

(th,1)
h . It can be written (see (5.39) and (5.43) of [17]), as

�b(x) =
0∑

h=−∞

∑

ω=±

[
Z

(1)
h

Zh

]2

[g(h)
th,ω(x)g

(h)
th,ω(−x) + G(h)(x)], (100)

where G(h)(x) is a function satisfying, for any N > 0, the bound

|G(h)(x)| ≤ CN

γ 2h

1 + [γ h|x|N ] . (101)

The Fourier transform of �c(x) is continuous; the same is true for cos(2pF x) �a(x), around
p = 0, thanks to the bound (6.45) of [17] (where k = p − 2pF is bounded for p small).
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On the other hand we can write

G
0,2
th,ρ,ρ(x) =

0∑

h=−∞

∑

ω=±

[
Z

(3)
h

Z̃h

]2

[g(h)
th,ω(x)g

(h)
th,ω(−x) + Ḡ(h)(x)] + G1(x), (102)

where Ḡ(h)(x) satisfies a bound similar to (101), as well as G1(x), which is given by graphs
with at least one propagator of scale ≥ 1. Using (76), (79) and (94), we get

∣∣∣∣
∫

dxeipx[�b(x) − G
0,2
th,ρ,ρ(x)]

∣∣∣∣ ≤
0∑

h=−∞
γ (2+ϑ)h

∫
dx

CN

1 + (γ h|x|) ≤ C1, (103)

which proves (43).
It remains to prove the three equations (44); let us consider the first. If 0 < κ ≤

|p|, |k′|, |k′ − p| ≤ 2κ , in §2.4 of [21] (see (2.63) of [21]) the following bound was proved,
∣∣∣∣Ĝ

2,1
ρ (k′ + pω

F ,k′ + p + pω
F )

∣∣∣∣ ≤ C

κ2−2η
, (104)

which is of course valid even for G
2,1
ρ,th(k

′,k′ + p). Moreover, if we choose the parameters
of the continuum model as before, we can show, by using again (76), (79) and (94), that
the difference R(k′,k′ + p) between Ĝ2,1

ρ (k′ + pω
F ,k′ + p + pω

F ) and G
2,1
ρ,th(k

′,k′ + p) is
given by a summable sum of terms, each bounded by the r.h.s. of (104) times a factor γ ϑj .
On the other hand, if hκ ≡ logγ (κ) is the scale of the external fermion propagators, each
term of the expansion must have at least one propagator of scale h0 ≤ hκ ; see (2.61), (2.62)
of [21] for a more detailed description of the expansion. Hence, we can write, for j ≥ hk ,
γ ϑj = κϑγ ϑ(j−hκ ) and we can absorb the factor γ ϑ(j−hκ ) in the bound, thanks to the short
memory property. It follows that

∣∣Ĝ2,1
ρ (k′ + pω

F ,k′ + p + pω
F ) − G

2,1
ρ,th(k

′,k′ + p)
∣∣ ≤ Cϑ

κϑ

κ2−2η
, (105)

from which the first of (44) is obtained; the second and the third of (44) are proved by similar
arguments.

Appendix A: Derivation of the Ward Identities (39)

Let us define ψ±
x,ω = ψ [l,N]±

x,ω , ρx,ω = ψ+
x,ωψ−

x,ω and let us consider the functional (37). By
proceeding as in §2.2 of [18], we can show that, by performing in (37) the change of the
variables ψ±

x,ω → e±iαx,ωψ±
x,ω , the following identity is obtained:

0 = 1

Z(J )

∫
PZ(dψ)

[−ZDω̄ρx,ω̄ + ZδTx,ω̄

]
e−V (N)(

√
Zψ)+∑

ω

∫
dxJx,ωρx,ω , (106)

where Dω = ∂0 + iω∂1, Z(J ) = exp[W(J )] and

δTx,ω = 1

(Lβ)2

∑

k+
=k−
ei(k+−k−)xCω(k+,k−)ψ̂+

k+,ω
ψ̂−

k−,ω
, (107)

Cω(q,p) = [χ−1
l,N (p) − 1]Dω(p) − [χ−1

l,N (q) − 1]Dω(q). (108)
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Note that χ−1
l,N (p) is not well defined for all values of p and indeed, in order to give a mean-

ing to the previous definition, we have to make a further regularization, which is also needed
to correctly exploit the gauge invariance of the “Lebesgue Grassmann measure”. This regu-
larization, which has no important role in the following arguments, is discussed in detail in
§2 of [18].

We now perform one functional derivative with respect to Jy,ω in the r.h.s. of (106), then
we put J = 0 and we take the Fourier transform. By some trivial algebra, we get the two
identities, valid for p 
= 0 and for any τ :

Dω(p)Gω,ω(p) − τ v̂0(p)D−ω(p)G−ω,ω(p) = RN,1(p),

D−ω(p)G−ω,ω(p) − τ v̂0(p)Dω(p)Gω,ω(p) = RN,2(p),
(109)

where

RN,1(p) = ∂2 WA

∂αp,ω∂J−p,ω

∣∣∣
J=α=0

, RN,2(p) = ∂2 WA

∂αp,−ω∂J−p,ω

∣∣∣
J=α=0

(110)

and

eWA(α,η,J ) =
∫

PZ(dψ)e−V (N)(
√

Zψ) +
∑

ω

∫
dx Jx,ωρx,ω e[A0−τA−](α,ψ), (111)

with

A0(α,ψ) =
∑

ω=±

∫
dq dp
(2π)4

Cω(q,p)̂αq−p,ωψ̂+
q,ωψ̂−

p,ω, (112)

A−(α,ψ) =
∑

ω=±

∫
dq dp
(2π)4

D−ω(p − q)v̂0(p − q)̂αq−p,ωψ̂+
q,−ωψ̂−

p,−ω. (113)

Note that the terms proportional to τ in (109) are obtained by adding and subtracting them
to the identities one really gets; they are in some sense two counterterms, introduced to
erase the local marginal parts of the terms in the effective potential proportional to αx,ωρx,ω ,
produced by contracting the vertex A0 with one or more λ vertices. As shown in [21, 22],
the introduction of a non local interaction (still gauge invariant) in the continuum model,
makes it possible to calculate them explicitly. Hence, the proof of (39) is equivalent to the
proof that, if τ = λ∞/4πc and p 
= 0, then

lim
−l,N→∞

RN,1(p) = − 1

4πcZ2
D−ω(p), lim

−l,N→∞
RN,2(p) = 0. (114)

This result is achieved by using the technique explained in §4 of [15], that we shall now
briefly explain.

The functional WA is analyzed, as always, by a multiscale integration and a tree expan-
sion; we get

RN,1(p) = − 1

Z2

∫
dk

(2π)2
Cω(k,k − p)ĝ

[l,N]
ω,th (k)ĝ

[l,N]
ω,th (k − p) + R̄N (p), (115)

where R̄N(p) is given by the sum over all graphs with at least one λ vertex, while the first
term in (115) is the 0 order contribution, coming from the contraction of the vertex δTx,ω
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with the vertex ρy,ω. It is easy to show that, if p 
= 0,

lim
−l,N→∞

∫
dk

(2π)2
Cω(k,k − p)ĝ

(l,N)
ω,th (k)ĝ

(l,N)
ω,ϑ (k − p) = 1

4πc
D−ω(p). (116)

Hence, to complete the proof, we have to show that, if p 
= 0, R̄N(p) and RN,2(p) vanish
in the removed cutoffs limit, thanks to the choice of the counterterm τA−. This result is
obtained by a slight extension of the analysis given in §4 of [15] for a similar problem; we
shall give some details, for people who have read that paper.

First of all, the sum over the graphs, such that one of the fermionic fields in A0 or A− is
contracted at scale l, can be bounded by Cγ l|p|−1, hence it vanishes as l → −∞, if p is kept
fixed at a value different from 0. Moreover, the sum over the other graphs, called R̃1,N (p),
can be written as

R̃1,N (p) =
N∑

k=0

K̂
(1;0;1)(k)
� + O(γ −ϑN), (117)

where K̂
(1;2m;s)(k)
� are the kernels of the monomials with one α field, 2m ψ fields and s

J -fields in the effective potential, after the integration of the scales N,N −1, . . . k, while the
last contribution comes from the trees with the root at a negative scale. The kernel K̂

(1;2m;s)(k)
�

can be decomposed as in Fig. 4.1 of [15] (with the analogue of the terms d and e missing
and a wiggling line in place of the two fermion external lines). By proceeding as in the proof
of (4.33)–(4.41) of [15], we can see that

|K̂(1;0;1)(k)
� | ≤ C|λ∞|γ −kγ −ϑ(N−k). (118)

It follows that R̄N (p) = 0 vanishes in the removed cutoffs limit; the same is true for
R2,N (p) = 0, as we can prove in a similar way.

Appendix B: Commutation Rules and Ward Identities

Let us consider the model (21) and let us introduce the density and the current operators (see
e.g. [12]):

ρx = S3
x + 1

2
= a+

x a−
x , x ∈ Z,

(119)

Jx = S1
xS

2
x+1 − S2

xS
1
x+1 = 1

2i
[a+

x+1a
−
x − a+

x a−
x+1] ≡ vF jx.

As it is well known, the functions G2,1
ρ (x,y, z) and G

2,1
j (x,y, z) can be written as

G2,1
ρ (x,y, z) = 〈T [ρxa

−
y a+

z ]〉L,β,

G
2,1
j (x,y, z) = 〈T [jxa

−
y a+

z ]〉L,β,
(120)

where 〈·〉L,β denotes the expectation in the Grand Canonical Ensemble, T is the time-
ordered product and

ρx = ex0H ρxe
−x0H , a±

x = ex0H a±
x e−x0H . (121)
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The above definition of the current is justified by the (imaginary time) conservation equa-
tion

∂ρx

∂x0
= eHx0 [H,ρx]e−Hx0 = −i∂(1)

x Jx ≡ −i[Jx,x0 − Jx−1,x0 ], (122)

where an important role plays the fact that

[H,ρx] = [HT ,ρx], HT = −1

2
[a+

x a−
x+1 + a+

x+1a
−
x ], (123)

a property which is not true for Jx .
By using (122) and some trivial calculation, one gets the identity

∂

∂x0
G2,1

ρ (x,y, z) = −ivF ∂(1)
x G

2,1
j (x,y, z)

+ δ(x0 − z0)δx,zG
2(y − x) − δ(x0 − y0)δx,yG

2(x − z). (124)

Let us now take the Fourier transform of the two sides of this equations. The renormalization
group analysis described in this paper implies that we can safely take the limit L,β → ∞
of Ĝ2,1

ρ (k,k + p), if p and k − pω
F are different from zero. Hence we get the identity (48),

under the conditions on the momenta of Lemma 1, for any value of κ .
In the same way we derive a WI for the density-density correlations. First we observe

that G0,2
ρ,ρ(x,y) = 〈T [ρxρy]〉L,β ; then, by using (122), we get

∂

∂x0
G0,2

ρ,ρ(x,y) = −ivF ∂(1)
x G

0,2
j,ρ(x,y) + δ(x0 − y0)〈[ρ(x,x0), ρ(y,x0)]〉L,β, (125)

where G
0,2
j,ρ(x,y) is defined in a way similar to G0,2

ρ,ρ(x,y), that is by using the definition in

the last line of (27), with J̃x in place of Jx. Let us now take the Fourier Transform; since
[ρ(x,x0), ρ(y,x0)] = 0, we get, in the limit L,β → ∞, under the conditions on the momenta of
Lemma 1, the identity:

−ip0G
0,2
ρ,ρ(p) − i(1 − e−ip)vF G

0,2
j,ρ(p) = 0, (126)

which implies (50).

Remark The WI (48) and (126) could also be obtained by doing in (24) the change of
variables ψ±

x → e±iαxψ±
x and by proceeding as in Appendix A for (37). However, in this

case the analysis of the corrections is much easier, since the ultraviolet problem involves
only the k0 variable; it is indeed very easy to prove that the corrections vanish in the M → ∞
limit.

Appendix C: First Order Calculation of Z(3) and Z̃(3)

In this appendix we show, by an explicit first order calculation, that the values of Z(3) and
Z̃(3), introduced in the proof of Lemma 1, after (89), are different, as stated before (97).

Z(3) is defined so that limh→−∞ Z
(3)
h /Z

(1)
h = 1, see (94). On the other hand, at the first

order, Z
(1)
h = 1 + αh, where αh is the sum of the values of the two Feynmann graphs of

Fig. 1, calculated at p = 0 and k̃ = pω
F = (0,ωpF ) (the result is independent of ω).
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Fig. 1 The first order
contributions to the
renormalization constants

By a simple calculation, we get, in the limit M,L,β → ∞,

αh = −2λ

∫
dk

(2π)2
ĝ(≥h)(k)2[−v̂(0) + v̂(k − ωpF )]

= −2λ

∫ π

0

dk

(2π)

∫ +∞

−∞

dk0

(2π)
ĝ(≥h)(k)2[−2v̂(0) + v̂(k − pF ) + v̂(k + pF )], (127)

where ĝ(≥h)(k) = ĝ(1)(k) + ∑
ω′

∑0
j=h ĝ

(j)

ω′ (k − pω′
F ) is the propagator with infrared cutoff

at scale h, see (61). Note that, if |k − ω′pF | ≥ γ h−1, ĝ(≥h)(k) = [−ik0 + (vs/vF )(cospF −
cos k)]−1 and that, if e0 
= 0,

∫
dk0[−ik0 + e0]−2 = 0. It follows that, if ε = γ h,

αh = −λ[v̂(0) − v̂(2pF )]
2π2vs

∫ ε

−ε

dt

∫ √
ε2−t2

−
√

ε2−t2
dk0

1

(−ik0 + t)2
+ O(ε), (128)

so that

α−∞ = lim
h→−∞

αh = −λ[v̂(0) − v̂(2pF )]
2πvs

. (129)

A similar calculation can be done for Z
(3)
h ; in fact, in this case, there is no term corresponding

to the second graph in Fig. 1, while the contribution corresponding to the first one, with the
external fermion propagators of index ω, is given by

λ

∫
dk

(2π)2
ĝ

[h,N]
th,−ω(k)2, (130)

with g
[h,N]
th,ω (k) defined as in (31). However, by the symmetry (88), the integral above vanishes

for any N ; hence, at the first order, Z
(3)
h = Z(3), which implies that Z(3) = 1+α−∞ +O(λ2).

A similar procedure can be followed for the first order calculation of Z̃(3). Let us consider
first Z̃

(1)
h ; since vF ĵ (k) = sink a+

k a−
k , we see immediately that Z̃

(1)
h = 1 + limh→−∞ ωβh,ω ,

where βh,ω is obtained from (127) by inserting in the integrand a factor sink/vF . It follows
that

βh,ω = −2λ

vF

∫ π

0

dk

(2π)
sink

∫ +∞

−∞

dk0

(2π)
ĝ(≥h)(k)2[v̂(k − ωpF ) − v̂(k + ωpF )], (131)

so that

lim
h→−∞

ωβh,ω = λ[v̂(0) − v̂(2pF )]
2πvs

= −α−∞. (132)

On the other hand, we get as before that, at the first order, Z̃
(3)
h = Z̃(3); hence Z̃(3) =

1 − α−∞ + O(λ2).
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Appendix D: Comparison with the Luttinger Model

In the case of the Luttinger model, we can repeat the analysis leading to Lemma 1 and we
can deduce two WI for the Luttinger model, which are similar in the form to (45), (46). If
we call G

2,1
L,α,ω , α = ρ, j , and G2

L,ω the correlation functions analogous to G
2,1
th,α,ω and G2

th,ω ,
we get the identities

− ip0 Ĝ
2,1
L,ρ,ω(k,k + p) + ωp ṽJ Ĝ

2,1
L,j,ω(k,k + p)

= Z(3)

(1 − τ)Z

[
Ĝ2

L,ω(k) − Ĝ2
L,ω(k + p)

][1 + O(κϑ)],
(133)

− ip0 Ĝ
2,1
L,j,ω(k,k + p) + ωp ṽNĜ

2,1
L,ρ,ω(k,k + p)

= Z̃(3)

(1 + τ)Z

[
Ĝ2

L,ω(k) − Ĝ2
L,ω(k + p)

][1 + O(κϑ)],

ṽJ and ṽN being defined as in (47). On the other hand, exact WI for the Luttinger model can
be obtained from the anomalous commutation relations, see e.g. [12]. In our notation, we
can write, if σ = λL/(2πvF ) and λL is the Luttinger coupling,

− ip0Ĝ
2,1
L,ρ;ω(k,k + p) + ωvF p(1 − σ)Ĝ

2,1
L,j ;ω(k,k + p)]

= Ĝ2
th;ω(k) − Ĝ2

th;ω(k + p),

(134)
− ip0Ĝ

2,1
th,j ;ω(k,k + p) + ωvF p(1 + σ)Ĝ

2,1
L,ρ;ω(k,k + p)]

= Ĝ2
th;ω(k) − Ĝ2

th;ω(k + p).

By comparing (133) with (134), we get:

ṽJ = vs

Z(3)

Z̃(3)
= vF (1 − σ), ṽN = vs

Z̃(3)

Z(3)
= vF (1 + σ), (135)

and

Z(3)

(1 − τ)Z
= 1,

Z̃(3)

(1 + τ)Z
= 1. (136)

The first identity in (136) implies, as in the quantum spin chain case, that κ = K/(πvs).
Moreover, the identities (135) imply that

vs = vF

√
(1 − σ 2), (137)

while (136) and (52) imply that

Z(3)

Z̃(3)
= 1 − τ

1 + τ
= K, (138)

the relation between K and τ = λ∞/(4πvs) being the same as in the quantum spin model.

On the other hand, (135) and (137) imply also that Z(3)

Z̃(3)
=

√
1−σ
1+σ

; hence we have an explicit
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expression of K in terms of σ , that is:

K =
√

1 − σ

1 + σ
. (139)

Note that (137) and (139) allow us to represent explicitly vs and K , which depend only
on the large distance behavior of the model, in terms of the “bare” quantities λL and vF .
This result is strictly related to the second identity in (136), which is missing in the spin
model, where it is replaced by the identity ṽJ = vF , see (49). For the same reasons, the
above equations imply also that, in the Luttinger model, the following identities are true,

ṽN = vsK
−1, ṽJ = vsK. (140)

Note that these relations are also verified by the quantities vJ and vN , introduced by Haldane
in [8, 9], but they are certainly not true in the spin model (3). In fact, in the XYZ case one
has, from the second of (49), that ṽJ is λ-independent, while vsK is not, as it is evident from
(19) and (20). The relation (54) is however valid also for the lattice model (3).
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